Magnet Helium Flow Passage Parameter Summary Pressure drop for turbulent flow in a non-circular conduit is $?P? \frac{?v^2}{2} \frac{L}{R_t} f$ where ? is average fluid density, v is average fluid velocity, L is conduit length, R_h is channel hydraulic radius, and f is friction factor based on hydraulic radius (which is D/4 for circular pipes). Substituting \overline{m} ? ?vA where \overline{m} is mass flow and A is conduit cross-sectional area gives $$?P? \frac{m^2}{2?A^2} \frac{L}{R_h} f$$ Substituting the definition for hydraulic radius: R_h ? $\frac{A}{W}$ where W is wetted perimeter, we have $$?P? \frac{m^2}{2?A^3} WLf$$ For turbulent flow, friction factor depends on Reynolds number to the 1/4 power and on surface roughness. Neglecting those, one can see that pressure drop per unit length is proportional to W/A³, wetted perimeter divided by flow area cubed. Thus, for the non-circular flow passages in our magnets, one can compare effective passage sizes by means of the parameter, W/A^3 . | Magnet passage | Total wetted
perimeter (W)
(cm) | Total flow
area (A)
(sq cm) | W/A ³
(cm ⁻⁵) | Equivalent
tube size
(cm dia) | Comments | |---|---------------------------------------|-----------------------------------|---|-------------------------------------|--| | TeV dipole single-phase
TeV dipole two-phase | 112.568
45.898 | | 0.020
0.025 | | Total for inner and outer channels
Annular space | | Present low beta single-phase
Present low beta two-phase | 114.480
174.670 | | 0.030
0.009 | | Outer collar channels and yoke holes only
Annular space | | LHC IR quad coldmass | 62.830 | 78.540 | 0.000 | 8.71 | 4 x 50 mm holes only | | BTeV IR quad coldmass | 56.000 | 24.000 | 0.004 | 4.37 | Yoke rectangular slots only | One can see from the equivalent tube sizes that our new low beta cold mass has plenty of single-phase flow area in the present design. If various slots and passages become filled with buswork or instrumentation, we should again check effective flow area.